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ABSTRACT

A brief survey of several graphical multivariate techniques are given.

Andrews' method is exploited as a graphical tool for the examination of

changes over time in the parameters of a time series model. An example is

given to illustrate the method
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SIGNIFICANCE AND EXPLANATION

A brief survey of several graphical multivariate techniques are given.

One of these due to Andrews is given in more detail. In his method, Andrews

represents each multidimensional point by a Fourier function. The clustering

of plots of these functions is equivalent to the clustering of the multi-

dimensional points. Andrews' method is exploited as a graphical tool for the

examination of changes over time in the parameters of a time series model. An

example consisting of temperature data is given to illustrate the method.
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ANDREWS' PLOTS AND THEIR APPLICATIONS

Agnes M. Herzbergt

1. Introduction.

If multivariate data are m-dimensional, then each set of m measurements

can be represented as an m-dimensional point. For m = 1,2, these points may

be plotted and clusters easily determined by inspection. For m > 2 , this is

more difficult. Several authors have developed graphical techniques to plot

high-dimensional data in two dimensions in order to be able to visually

cluster the data; see, for example, Andrews (1972), Chernoff (1973), Kleiner

and Hartiqan (1981) and Anderson (1928, 1936). More mathematical techniques

have been given by Beale (1969) and Banfield and Bassil (1977).

2. Sevetal graphical methods.

Kleiner and Hartigan (1981) introduced what they termed trees and castles.

First, a hierarchical clustering algorithm is applied to the m variables

over all the points; see for example Onanadesikan (1977). From this the

structure of the tree or castle will be determined. All points will be

represented by a similar structure, i.e. the thickness, position and angle of

the branches in the case of trees will be the same, but the length of the

branches will be determined by the sizes of the respective variables for the

individual points. Similar trees and castles determined by visual inspection

are clustered.
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Chernoff (1973) represents-each variable as a feature of a face , for

example length of mouth, shape of mouth, size of eyes, etc. The resulting

clustering of this representation is very subjective because different people

focus on different features of faces.

Anderson (1928, 1936) was very concerned with the sepal length and width

and petal length and width of irises. He developed pictorial methods which he

called ideographs for representing and comparing these four-dimensional

data. An ideograph looks like an upside-down U with some width. In the

case of the iris measurements, the inside and outside height and width

measurements of the ideograph are proportional to the sepal length and width

and the petal length and width, respectively. Similar ideographs can easily

be clustered by visual inspection.

There are many other graphical representations for multivariate data, but

these will not be discussed.

3. Andrews' plots.

Andrews (1972) proposed the following simple and useful method of

plotting high-dimensional data in two dimensions. If the data are m-

dimensional, each point x' = (xl,.o.,xm), where x i(i = 1,...,m) are the

measured variables, is represented by the function

f (t) = x 2 2+ x2 sin t + x3 cos t + x4 sin 2t + x5 cos 2t + *.. (1)x 1

plotted over the ranqe -n < t < 7 . The functions given by (1) have several

properties. If x. = (xii .. ,x mi) (i = 1,.-,n) are n points in m-

dimensional space, then
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(t) - 2 f (t)

If (t) - f (t)L L {f (t) - f M) 2dt
?S !Si 2  (t)?)dtS

m 2

=

k-1 'ki - kjI

Thus Andrews' plots will preserve means, distances and variances and will also

give one-dimensional projections. When (1) is plotted for each data point

x , the clustering of the points may be seen by a banding together of the

plots of the functions. Since the functions preserve the distance property,

plots of the functions that are close together imply that the corresponding

data points are close together.

4. Variation of model parameters.

Herzberg and Hickie (1981) considered the following. Let the regression

model be written in the form

a + (J - 1,---,T- n + 1), (2)

where T is the total number of observations n is the number of

observations in each subgroup of observations used for estimating the unknown

parameters, Yj= (1 Oj,***Ynj)' is an n x 1 vector, Ykj being the kth

observation in the jth subgroup (k = 1,-.°,n), X is the n x m matrix of

the regressors, a is the m x 1 vector of unknown parameters and

U is the n x I vector of error terms. All the elements of the U 's are

assumed to be independent and normally distributed with mean 0 and variance

2
a . It is assumed that the T observations are taken sequentially over

time and it is desired to examine the variations in the 8 over time.
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Let -= )' ' be the m x 1 vector of least squares

estimates of the elements of the vector obtained from the jth set of

n observations (n 4 T), i.e. i1 is estimated from the first n

observations, 92 is estimated from the second observation to the (n+1)st

observations, etc. From each plot the function f (t), defined in (1),

over the range -w < t < n . The plots of these functions will show the

change over time in the vector of coefficients

Herzberg and Hickie (1981) consider two sets of data using polynomial and

Fourier series models in (2). One of the sets of data has a cyclic effect,

the other having cyclic effect plus trend. For both sets of data it was known

that the period was 12 months. It could also be seen that every 12th plot was

similar.

For one of their examples, namely the monthly mean daily air temperatures

(OC) at sea level for England and Wales from January 1970 to December 1977 as

published by the Central Statistical Office Monthly Digest of Statistics

(HMSO), Herzberg and Hickie (1981) fitted the cubic polynomial model,

E(y J+i-1)= lj + 02ji + a 3ji + 64j i 3  (3)

by least squares. Here yj+i-1 is the observed temperature in mouth j + i-I

For each j in (3) fixed, i = 1,.oo,12, j = ( j, 2j,3jB4j}' the

least squares estimate of j was obtained (j = 1,...,85). Figure 1 shows

the resulting Andrews' plots. The plots in Figure 1.k are those obtained

from (j = k, k+12, k+24, k+48, k+60, k+72, k+84; j 4 85). It can be seen

that the plots in each of the Figures 1.k are similar.

-4-



In situations where the period is unknown, Andrews' plots may be plotted

for several values of n in order to determine similarities and, therefore,

the length of the period.

Because of their mathematical and resulting statistical properties,

Andrews' plots can be used as a tool for finding outliers in a time series.

Work is at present being done on this and on using Andrews' plots as a

sequential graphical method for discriminating among models.
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